Optimization of Xylanase Production fromPenicillium citrinum in Solid-State Fermentation

نویسندگان

  • G. Ghoshal
  • U. C. Banerjee
  • Y. Chisti
  • U. S. Shivhare
چکیده

Solid-state fermentation of sugarcane bagasse by Penicillium citrinum MTCC 2553 was optimized to maximize the yield of xylanase. Preliminary experiments carried out with various lignocellulosic materials revealed sugarcane bagasse to be the most suitable substrate for producing xylanase. Response surface methodology was used in the optimization. Xylanase activity was maximized in a 5-day batch fermentation carried out under the following conditions: a substrate-to-moisture ratio of 1:5 by mass, an initial pH of 7.0 and an incubation temperature of 30 °C. Under the optimal conditions, the final activity of xylanase was 1645 U g of dry substrate. Xylanase was recovered from an extract of the fermented solids by ammonium sulfate precipitation. The crude enzyme was further purified by dialysis. The activity of the enzyme was enhanced in the presence of Na, Mg, Mn, Fe, Zn, Cu, Co and Tween 80. The enzyme was inhibited by Hg, Ca and the chelating agent ethylene diamine tetra acetic acid (EDTA).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Xylanase Production under Solid State Fermentation by Aspergillus niger

 Central composite orthogonal design was applied to quantify relations  of xylanase production, loss of dry matter and change of pH with four critical variables during solid state fermentation of a mixture of wheat bran and wheat straw on which Aspergillus niger CCUG 33991 was cultivated. The studied variables included the percentage of wheat straw, temperature, moisture content, and fermentati...

متن کامل

Xylanase production from Penicillium citrinum isolate HZN13 using response surface methodology and characterization of immobilized xylanase on glutaraldehyde-activated calcium-alginate beads

The present study reports the production of high-level cellulase-free xylanase from Penicillium citrinum isolate HZN13. The variability in xylanase titers was assessed under both solid-state (SSF) and submerged (SmF) fermentation. SSF was initially optimized with different agro-waste residues, among them sweet sorghum bagasse was found to be the best substrate that favored maximum xylanase prod...

متن کامل

Optimization of Culture Conditions for the Production of Xylanase in Submerge Fermentation by Penicillium Citrinum Using Response Surface Methodology

In the present study Response surface methodology (RSM) was used to investigate the combined effect of relevant process variables to maximize the production of xylanase in submerge fermentation by Penicillium citrinum MTCC 2553. The process variables include pH (6.5, 7.0, and 7.5); temperature (25, 30, and 35°C); agitation speed (190, 200, and 210 rpm); and, substrate (xylan) concentration (0.7...

متن کامل

XYLANASE from STREPTOMYCES HYGROSCOPICUS under Solid State Fermentation

The objectives of the present study were isolation, identification, and characterization of xylanase producing actinomycetes, optimization of medium composition and cultural conditions for xylanase production, production using cheaper sources and extraction of extra cellular xylanase from a potential strain. Streptomyces hygroscopicus was selected and optimized for xylanase production in solid ...

متن کامل

Optimization and Scale Up of Cellulase-Free Xylanase Production in Solid State Fermentation on Wheat Bran by Cellulosimicrobium sp. MTCC 10645

The production of cellulase-free xylanase was investigated with a locally isolated and identified strain, Cellulosimicrobium sp. MTCC 10645 in solid state fermentation. Different fermentation conditions were standardised for the growth and xylanase activity, the optimum being 72 h growth at pH 7.0, cultivation temperature 40°C and substrate to moisture ratio of 1:1.8 (w/v). Among different lign...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012